Chatbot
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

404 lines
17 KiB

2 years ago
import asyncio
2 years ago
import os, time
2 years ago
from .prompts import *
from .langchain_memory import CustomMemory # BotConversationSummaryBufferWindowMemory, TestMemory
2 years ago
from ..utilities.messages import Message
2 years ago
from langchain import PromptTemplate
2 years ago
from langchain import LLMChain, ConversationChain
from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory, CombinedMemory, ConversationSummaryMemory
2 years ago
2 years ago
from langchain.chains.base import Chain
2 years ago
from typing import Dict, List, Union
2 years ago
from langchain.document_loaders import TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import Chroma
2 years ago
2 years ago
from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser, ZeroShotAgent
from langchain.schema import AgentAction, AgentFinish
from langchain.schema import AIMessage, HumanMessage, SystemMessage, ChatMessage
from langchain.utilities import OpenWeatherMapAPIWrapper, SearxSearchWrapper, PythonREPL
from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper
import humanize
2 years ago
from datetime import datetime, timedelta
2 years ago
import logging
logger = logging.getLogger(__name__)
2 years ago
class RoleplayChain(Chain):
llm_chain: LLMChain
character_name: str
persona: str
scenario: str
ai_name_chat: str
human_name_chat: str
output_key: str = "output_text" #: :meta private:
@property
def input_keys(self) -> List[str]:
return ["character_name", "persona", "scenario", "ai_name_chat", "human_name_chat", "llm_chain"]
@property
def output_keys(self) -> List[str]:
return [self.output_key]
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
other_keys = {k: v for k, v in inputs.items() if k not in self.input_keys}
result = self.llm_chain.predict(**other_keys)
return {self.output_key: result}
2 years ago
class CustomOutputParser(AgentOutputParser):
2 years ago
2 years ago
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
# Check if agent should finish
if "Final Answer:" in llm_output:
return AgentFinish(
# Return values is generally always a dictionary with a single `output` key
# It is not recommended to try anything else at the moment :)
return_values={"output": llm_output.split("Final Answer:")[-1].strip()},
log=llm_output,
)
# Parse out the action and action input
regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
regex = r"Action\s*\d*\s*:(.*?)[\s]*[\"\'](.*)[\"\']"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2)
# Return the action and action input
return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output)
2 years ago
2 years ago
class AI(object):
2 years ago
def __init__(self, bot, text_wrapper, image_wrapper, memory_path: str):
2 years ago
self.name = bot.name
self.bot = bot
2 years ago
self.memory_path = memory_path
2 years ago
self.rooms = {}
2 years ago
from ..wrappers.langchain_koboldcpp import KoboldCpp
self.llm_chat = KoboldCpp(temperature=self.bot.temperature, endpoint_url="http://172.16.85.10:5001/api/latest/generate", stop=['<|endoftext|>'])
self.llm_summary = KoboldCpp(temperature=0.2, endpoint_url="http://172.16.85.10:5002/api/latest/generate", stop=['<|endoftext|>'], max_tokens=512)
2 years ago
self.text_wrapper = text_wrapper
self.image_wrapper = image_wrapper
2 years ago
self.embeddings = SentenceTransformerEmbeddings()
#embeddings = SentenceTransformerEmbeddings(model="all-MiniLM-L6-v2")
self.db = Chroma(persist_directory=os.path.join(self.memory_path, f'chroma-db'), embedding_function=self.embeddings)
2 years ago
2 years ago
#self.memory = BotConversationSummerBufferWindowMemory(llm=self.llm_summary, max_token_limit=1200, min_token_limit=200)
2 years ago
def get_memory(self, room_id, human_prefix="Human"):
if not room_id in self.rooms:
self.rooms[room_id] = {}
memory = CustomMemory(memory_key="chat_history", input_key="input", human_prefix=human_prefix, ai_prefix=self.bot.name, llm=self.llm_summary, summary_prompt=prompt_progressive_summary, max_len=1200, min_len=200)
2 years ago
self.rooms[room_id]["memory"] = memory
self.rooms[room_id]["summary"] = "No previous events."
2 years ago
memory.chat_memory.add_ai_message(self.bot.greeting)
#memory.save_context({"input": None, "output": self.bot.greeting})
memory.load_memory_variables({})
else:
2 years ago
memory = self.rooms[room_id]["memory"]
#print(f"memory: {memory.load_memory_variables({})}")
#print(f"memory has an estimated {self.llm_chat.get_num_tokens(memory.buffer)} number of tokens")
2 years ago
return memory
2 years ago
2 years ago
async def add_chat_message(self, message):
conversation_memory = self.get_memory(message.room_id)
langchain_message = message.to_langchain()
if message.user_id == self.bot.connection.user_id:
langchain_message.role = self.bot.name
conversation_memory.chat_memory.messages.append(langchain_message)
2 years ago
2 years ago
async def clear(self, room_id):
conversation_memory = self.get_memory(room_id)
conversation_memory.clear()
2 years ago
2 years ago
async def ingest_textfile(self, filename, category):
loader = TextLoader(filename)
2 years ago
documents = loader.load()
2 years ago
documents[0].metadata['indexed'] = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
documents[0].metadata['category'] = category
2 years ago
text_splitter = RecursiveCharacterTextSplitter(
# Set a really small chunk size, just to show.
2 years ago
chunk_size = 1024,
chunk_overlap = 80,
2 years ago
length_function = len,
2 years ago
#length_function = self.llm_chat.get_num_tokens, # The Embeddings are generated with SsentenceTransformers, not this model
2 years ago
)
2 years ago
2 years ago
docs = text_splitter.split_documents(documents)
2 years ago
2 years ago
for i in range(len(docs)):
docs[i].metadata['part'] = f"{i}/{len(docs)}"
2 years ago
print(f"Indexing {len(docs)} documents")
texts = [doc.page_content for doc in docs]
metadatas = [doc.metadata for doc in docs]
2 years ago
self.db.add_texts(texts=texts, metadatas=metadatas, ids=None)
self.db.persist()
async def search_vectordb(self, query, category):
#query = "How is climate in Germany?"
#retreiver = db.as_retreiver()
#docs = retreiver.get_relevant_documents(query)
if category:
#https://github.com/chroma-core/chroma/blob/main/examples/where_filtering.ipynb
output_docs = self.db.similarity_search_with_score(query, filter={"category": category})
else:
output_docs = self.db.similarity_search_with_score(query)
2 years ago
print(query)
print('###')
for doc, score in output_docs:
print("-" * 80)
print("Score: ", score)
2 years ago
#print(doc.page_content)
print(doc)
2 years ago
print("-" * 80)
2 years ago
2 years ago
async def generate(self, message, reply_fn, typing_fn):
2 years ago
prompt_template = "{input}"
chain = LLMChain(
llm=self.llm_chat,
prompt=PromptTemplate.from_template(prompt_template),
)
2 years ago
output = await chain.arun(message.message)
2 years ago
return output.strip()
2 years ago
async def generate_roleplay(self, message, reply_fn, typing_fn):
2 years ago
chat_ai_name = self.bot.name
chat_human_name = message.additional_kwargs['user_name']
room_id = message.additional_kwargs['room_id']
if False: # model is vicuna
chat_ai_name = "### Assistant"
chat_human_name = "### Human"
conversation_memory = self.get_memory(room_id, chat_human_name)
2 years ago
conversation_memory.human_prefix = chat_human_name
readonlymemory = ReadOnlySharedMemory(memory=conversation_memory)
summary_memory = ConversationSummaryMemory(llm=self.llm_summary, memory_key="summary", input_key="input")
#combined_memory = CombinedMemory(memories=[conversation_memory, summary_memory])
2 years ago
k = 1 # 5
max_k = 3 # 12
if len(conversation_memory.chat_memory.messages) > max_k*2:
async def make_progressive_summary(previous_summary, chat_history_text_string):
2 years ago
await asyncio.sleep(0) # yield for matrix-nio
#self.rooms[room_id]["summary"] = summary_memory.predict_new_summary(conversation_memory.chat_memory.messages, previous_summary).strip()
2 years ago
summary_chain = LLMChain(llm=self.llm_summary, prompt=prompt_progressive_summary, verbose=True)
self.rooms[room_id]["summary"] = await summary_chain.apredict(summary=previous_summary, chat_history=chat_history_text_string)
# ToDo: maybe add an add_task_done callback and don't access the variable directly from here?
logger.info(f"New summary is: \"{self.rooms[room_id]['summary']}\"")
conversation_memory.chat_memory.messages = conversation_memory.chat_memory.messages[-k * 2 :]
conversation_memory.load_memory_variables({})
#summary = summarize(conversation_memory.buffer)
#print(summary)
#return summary
2 years ago
logger.info("memory progressive summary scheduled...")
await self.bot.schedule(self.bot.queue, make_progressive_summary, self.rooms[room_id]["summary"], conversation_memory.buffer) #.add_done_callback(
#t = datetime.fromtimestamp(message.additional_kwargs['timestamp'])
#when = humanize.naturaltime(t)
#print(when)
# ToDo: either use prompt.format() to fill out the pygmalion prompt and use
# the resulting template text to feed it into the instruct prompt's instruction
# or do this with the prompt.partial()
2 years ago
prompt = prompt_vicuna.partial(
ai_name=self.bot.name,
persona=self.bot.persona,
scenario=self.bot.scenario,
summary=self.rooms[room_id]["summary"],
human_name=chat_human_name,
#example_dialogue=replace_all(self.bot.example_dialogue, {"{{user}}": chat_human_name, "{{char}}": chat_ai_name})
ai_name_chat=chat_ai_name,
2 years ago
)
2 years ago
chain = ConversationChain(
2 years ago
llm=self.llm_chat,
2 years ago
prompt=prompt,
2 years ago
verbose=True,
memory=readonlymemory,
#stop=['<|endoftext|>', '\nYou:', f"\n{chat_human_name}:"],
2 years ago
)
2 years ago
# output = llm_chain(inputs={"ai_name": self.bot.name, "persona": self.bot.persona, "scenario": self.bot.scenario, "human_name": chat_human_name, "ai_name_chat": self.bot.name, "chat_history": "", "input": message.content})['results'][0]['text']
2 years ago
#roleplay_chain = RoleplayChain(llm_chain=chain, character_name=self.bot.name, persona=self.bot.persona, scenario=self.bot.scenario, ai_name_chat=chat_ai_name, human_name_chat=chat_human_name)
2 years ago
2 years ago
stop = ['<|endoftext|>', f"\n{chat_human_name}"]
#print(f"Message is: \"{message.content}\"")
2 years ago
await asyncio.sleep(0)
output = await chain.arun({"input":message.content, "stop": stop})
output = output.replace("<BOT>", self.bot.name).replace("<USER>", chat_human_name)
output = output.replace("### Assistant", self.bot.name)
2 years ago
output = output.replace(f"\n{self.bot.name}: ", " ")
output = output.strip()
if "*activates the neural uplink*" in output.casefold():
pass # call agent
own_message_resp = await reply_fn(output)
2 years ago
langchain_ai_message = AIMessage(
content=output,
additional_kwargs={
"timestamp": datetime.now().timestamp(),
"user_name": self.bot.name,
"event_id": own_message_resp.event_id,
2 years ago
"user_id": None,
"room_name": message.additional_kwargs['room_name'],
"room_id": own_message_resp.room_id,
2 years ago
}
)
conversation_memory.save_context({"input": message.content}, {"ouput": output})
conversation_memory.load_memory_variables({})
2 years ago
return output
2 years ago
async def summarize(self, text):
2 years ago
await asyncio.sleep(0) # yield for matrix-nio
summary_chain = LLMChain(llm=self.llm_summary, prompt=prompt_summary, verbose=True)
return await summary_chain.arun(text=text)
#ToDo: We can summarize the whole dialogue here, let half of it in the buffer but skip doing a summary until this is flushed, too?
#ToDo: max_tokens and stop
async def diary(self, room_id):
await asyncio.sleep(0) # yield for matrix-nio
diary_chain = LLMChain(llm=self.llm_summary, prompt=prompt_outline, verbose=True)
conversation_memory = self.get_memory(room_id)
2 years ago
#self.rooms[message.room_id]["summary"]
string_messages = []
for m in conversation_memory.chat_memory_day.messages:
string_messages.append(f"{message.role}: {message.content}")
2 years ago
return await diary_chain.apredict(text="\n".join(string_messages))
async def agent(self):
os.environ["OPENWEATHERMAP_API_KEY"] = "82452fdb0d1e0e805ac096db87914342"
# Tools
search = DuckDuckGoSearchAPIWrapper()
weather = OpenWeatherMapAPIWrapper()
search2 = SearxSearchWrapper(searx_host="https://search.mdosch.de")
python_repl = PythonREPL()
tools = [
Tool(
name = "Search",
func=search.run,
description="useful for when you need to answer questions about current events"
),
Tool(
name = "Searx Search",
func=search.run,
description="useful for when you need to answer questions about current events"
),
Tool(
name = "Weather",
func=weather.run,
description="Useful for fetching current weather information for a specified location. Input should be a location string (e.g. 'London,GB')."
),
Tool(
name = "Summary",
func=summry_chain.run,
description="useful for when you summarize a conversation. The input to this tool should be a string, representing who will read this summary."
)
]
prompt = ZeroShotAgent.create_prompt(
tools=tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "chat_history", "agent_scratchpad"]
)
output_parser = CustomOutputParser()
# LLM chain consisting of the LLM and a prompt
llm_chain = LLMChain(llm=llm, prompt=prompt_agent)
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
#agent = initialize_agent(tools, llm, agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION, verbose=True, return_intermediate_steps=True, memory=memory)
#tool_names = [tool.name for tool in tools]
#agent = LLMSingleActionAgent(
# llm_chain=llm_chain,
# output_parser=output_parser,
# stop=["\nObservation:"],
# allowed_tools=tool_names,
# verbose=True,
#)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory)
await agent_executor.arun(input="How many people live in canada as of 2023?")
async def sleep(self):
# Write Date into chat history
for room_id in self.rooms.keys():
#fake_message = Message(datetime.now().timestamp(), self.bot.name, "", event_id=None, user_id=None, room_name=None, room_id=room_id)
conversation_memory = self.get_memory(room_id)
message = SystemMessage(
content=f"~~~~ {datetime.now().strftime('%A, %B %d, %Y')} ~~~~",
additional_kwargs={
"timestamp": datetime.now().timestamp(),
"user_name": self.bot.name,
"event_id": None,
"user_id": None,
"room_name": None,
"room_id": room_id,
}
)
conversation_memory.chat_memory.messages.append(message)
#conversation_memory.chat_memory.add_system_message(message)
# Summarize the last day and save a diary entry
yesterday = ( datetime.now() - timedelta(days=1) ).strftime('%Y-%m-%d')
for room_id in self.rooms.keys():
if len(conversation_memory.chat_memory_day.messages) > 0:
2 years ago
self.bot.rooms[room_id]["diary"][yesterday] = await self.diary(room_id)
# Calculate new goals for the character
# Update stats
# Let background tasks run
conversation_memory.chat_memory_day.clear()
2 years ago
await self.bot.write_conf2(self.bot.rooms)
async def prime_llm(self, text):
self.llm_chat(text, max_tokens=1)
2 years ago
def replace_all(text, dic):
for i, j in dic.items():
text = text.replace(i, j)
return text