from typing import Any, Dict, List from langchain.chains.llm import LLMChain from langchain.memory.chat_memory import BaseChatMemory from langchain.memory.prompt import SUMMARY_PROMPT from langchain.prompts.base import BasePromptTemplate from langchain.schema import BaseLanguageModel, BaseMessage, get_buffer_string from ..utilities.messages import Message class ChatMessageHistory(BaseModel): messages: List[Message] = [] def add_user_message(self, message: Message) -> None: self.messages.append(message) def add_ai_message(self, message: Message) -> None: self.messages.append(message) def add_system_message(self, message: Message) -> None: self.messages.append(message) def add_chat_message(self, message: Message) -> None: self.messages.append(message) def clear(self) -> None: self.messages = [] class TestMemory(BaseMemory): """Buffer for storing conversation memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" chat_memory: ChatMessageHistory = Field(default_factory=ChatMessageHistory) # buffer: str = "" output_key: Optional[str] = None input_key: Optional[str] = None memory_key: str = "history" #: :meta private: @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" string_messages = [] for m in chat_memory.messages: string_messages.append(f"{message.user_name}: {message.message}") return {self.memory_key: "\n".join(string_messages)} def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" input_str, output_str = self._get_input_output(inputs, outputs) self.chat_memory.add_user_message(input_str) self.chat_memory.add_ai_message(output_str) def clear(self) -> None: """Clear memory contents.""" self.chat_memory.clear() class BotConversationSummaryBufferWindowMemory(BaseChatMemory): """Buffer for storing conversation memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" # Define key to pass information about entities into prompt. memory_key: str = "history" #: :meta private: #k: int = 5 max_token_limit: int = 1200 min_token_limit: int = 200 moving_summary_buffer: str = "" llm: BaseLanguageModel summary_prompt: BasePromptTemplate = SUMMARY_PROMPT @property def buffer(self) -> List[BaseMessage]: """String buffer of memory.""" return self.chat_memory.messages @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Return history buffer.""" buffer = self.buffer #buffer: Any = self.buffer[-self.k * 2 :] if self.k > 0 else [] if not self.return_messages: buffer = get_buffer_string( buffer, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) return {self.memory_key: buffer} def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer. Pruned.""" super().save_context(inputs, outputs) # Prune buffer if it exceeds max token limit buffer = self.chat_memory.messages curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) if curr_buffer_length > self.max_token_limit: pruned_memory = [] while curr_buffer_length > self.min_token_limit: pruned_memory.append(buffer.pop(0)) curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) self.moving_summary_buffer = self.predict_new_summary( pruned_memory, self.moving_summary_buffer ) def clear(self) -> None: """Clear memory contents.""" super().clear() self.moving_summary_buffer = "" def predict_new_summary( self, messages: List[BaseMessage], existing_summary: str ) -> str: new_lines = get_buffer_string( messages, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) chain = LLMChain(llm=self.llm, prompt=self.summary_prompt) return chain.predict(summary=existing_summary, new_lines=new_lines)