import asyncio import time from .prompts import * from .langchain_memory import BotConversationSummerBufferWindowMemory from langchain import PromptTemplate from langchain import LLMChain, ConversationChain from langchain.memory import ConversationBufferMemory from langchain.chains.base import Chain from typing import Dict, List from langchain.document_loaders import TextLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import SentenceTransformerEmbeddings from langchain.vectorstores import Chroma import logging logger = logging.getLogger(__name__) class RoleplayChain(Chain): llm_chain: LLMChain character_name: str persona: str scenario: str ai_name_chat: str human_name_chat: str output_key: str = "output_text" #: :meta private: @property def input_keys(self) -> List[str]: return ["character_name", "persona", "scenario", "ai_name_chat", "human_name_chat", "llm_chain"] @property def output_keys(self) -> List[str]: return [self.output_key] def _call(self, inputs: Dict[str, str]) -> Dict[str, str]: other_keys = {k: v for k, v in inputs.items() if k not in self.input_keys} result = self.llm_chain.predict(**other_keys) return {self.output_key: result} class AI(object): def __init__(self, bot, text_wrapper, image_wrapper, memory_path: str): self.name = bot.name self.bot = bot self.memory_path = memory_path from ..wrappers.langchain_koboldcpp import KoboldCpp self.llm_chat = KoboldCpp(temperature=self.bot.temperature, endpoint_url="http://172.16.85.10:5001/api/latest/generate", stop=['<|endoftext|>']) self.llm_summary = KoboldCpp(temperature=0.2, endpoint_url="http://172.16.85.10:5001/api/latest/generate", stop=['<|endoftext|>']) self.text_wrapper = text_wrapper self.image_wrapper = image_wrapper #self.memory = BotConversationSummerBufferWindowMemory(llm=self.llm_summary, max_token_limit=1200, min_token_limit=200) self.memory = ConversationBufferMemory(memory_key="chat_history", human_prefix="You", ai_prefix=self.bot.name) async def generate(self, message, reply_fn, typing_fn): embeddings = SentenceTransformerEmbeddings() #embeddings = SentenceTransformerEmbeddings(model="all-MiniLM-L6-v2") loader = TextLoader('./germany.txt') documents = loader.load() text_splitter = RecursiveCharacterTextSplitter( # Set a really small chunk size, just to show. chunk_size = 600, chunk_overlap = 100, length_function = len, ) docs = text_splitter.split_documents(documents) db = Chroma(persist_directory=f'{self.memory_path}/chroma-db', embedding_function=embeddings) print(f"Indexing {len(docs)} documents") texts = [doc.page_content for doc in docs] metadatas = [doc.metadata for doc in docs] #db.add_texts(texts=texts, metadatas=metadatas, ids=None) #db.persist() query = "How is climate in Germany?" output_docs = db.similarity_search_with_score(query) print(query) print('###') for doc, score in output_docs: print("-" * 80) print("Score: ", score) print(doc.page_content) print("-" * 80) prompt_template = "{input}" chain = LLMChain( llm=self.llm_chat, prompt=PromptTemplate.from_template(prompt_template), ) output = chain.run(message.message) return output.strip() async def generate_roleplay(self, message, reply_fn, typing_fn): self.memory.human_prefix = message.user_name prompt = prompt_vicuna.partial( ai_name=self.bot.name, persona=self.bot.persona, scenario=self.bot.scenario, human_name=message.user_name, ai_name_chat=self.bot.name, ) chain = ConversationChain( llm=self.llm_chat, prompt=prompt, verbose=True, memory=self.memory, #stop=['<|endoftext|>', '\nYou:', f"\n{message.user_name}:"], ) # output = llm_chain(inputs={"ai_name": self.bot.name, "persona": self.bot.persona, "scenario": self.bot.scenario, "human_name": message.user_name, "ai_name_chat": self.bot.name, "chat_history": "", "input": message.message})['results'][0]['text'] #roleplay_chain = RoleplayChain(llm_chain=chain, character_name=self.bot.name, persona=self.bot.persona, scenario=self.bot.scenario, ai_name_chat=self.bot.name, human_name_chat=message.user_name) output = chain.run({"input":message.message, "stop": ['<|endoftext|>', f"\n{message.user_name}:"]}) return output.strip() def estimate_num_tokens(input_text: str): return len(input_text)//4+1