# https://github.com/oobabooga/text-generation-webui/blob/main/modules/RWKV.py import os from pathlib import Path import numpy as np from tokenizers import Tokenizer #from modules.callbacks import Iteratorize np.set_printoptions(precision=4, suppress=True, linewidth=200) os.environ['RWKV_JIT_ON'] = '1' os.environ["RWKV_CUDA_ON"] = '1' from rwkv.model import RWKV from rwkv.utils import PIPELINE, PIPELINE_ARGS class RWKVModel: def __init__(self): pass @classmethod def from_pretrained(self, path, dtype="fp16", device="cuda"): tokenizer_path = Path(f"{path.parent}/20B_tokenizer.json") model = RWKV(model=str(path), strategy=f'{device} {dtype}') #model = RWKV(model=str(path), strategy='cuda fp16i8 *8 -> cuda fp16') pipeline = PIPELINE(model, str(tokenizer_path)) result = self() result.pipeline = pipeline return result def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=None, alpha_frequency=0.1, alpha_presence=0.1, token_ban=[0], token_stop=[], callback=None): args = PIPELINE_ARGS( temperature=temperature, top_p=top_p, top_k=top_k, alpha_frequency=alpha_frequency, # Frequency Penalty (as in GPT-3) alpha_presence=alpha_presence, # Presence Penalty (as in GPT-3) token_ban=token_ban, # ban the generation of some tokens token_stop=token_stop ) return self.pipeline.generate(context, token_count=token_count, args=args, callback=callback) # def generate_with_streaming(self, **kwargs): # with Iteratorize(self.generate, kwargs, callback=None) as generator: # reply = '' # for token in generator: # reply += token # yield reply class RWKVTokenizer: def __init__(self): pass @classmethod def from_pretrained(self, path): tokenizer_path = path / "20B_tokenizer.json" tokenizer = Tokenizer.from_file(str(tokenizer_path)) result = self() result.tokenizer = tokenizer return result def encode(self, prompt): return self.tokenizer.encode(prompt).ids def decode(self, ids): return self.tokenizer.decode(ids)