224 lines
4.1 KiB

#include"../autoconf.h"
#include <avr/interrupt.h>
#include <avr/io.h>
#include <avr/wdt.h>
#include "borg_hw.h"
/* pinout of the ribbon cable connected to the panel
* (the numbering is actually upside down)
*
* 1-3 GND
* 4 +5V for logic
* 5-8 +12V
* 9-10 GND
* 11 CP3
* 12 CP2
* 13 CP1
* 14 /show
* 15 CP4
* 16 /EO3
* 17-18 GND
* 19-26 D0-D7
*
* and now the right way round:
* 1 D7
* 2 D6
* 3 D5
* 4 D4
* 5 D3
* 6 D2
* 7 D1
* 8 D0
* 9 GND
* 10 GND
* 11 /EO3
* 12 CP4
* 13 /show
* 14 CP1
* 15 CP2
* 16 CP3
* 17 GND
* 18 GND
* 19 +12V
* 20 +12V
* 21 +12V
* 22 +12V
* 23 +5V
* 24 GND
* 25 GND
* 26 GND
*
* Four 40374 latches are used. No. 1, 2 and 4 drive from the data bus to the
* panel, no. 3 drives from the button outputs to the data bus. The EOs of
* 1, 2 and 4 are hardwired to GND.
*
* The LEDs are aligned to a 12*16 matrix. The values for the LED columns are
* passed to the latches via CP1 und CP2 (16 columns total). The index of the
* row is passed during the deletion of "/show".
*
* The buttons are aligned to an 8*8 matrix. The rows get separately set to
* "high" via latch 4. The columns can then be read via latch 3.
*/
// data port for the panel
#define COLPORT PORTC
#define COLDDR DDRC
#define COLPIN PINC
#define CTRLPORT PORTD
#define CTRLDDR DDRD
// pins on CTRLPORT
#define PIN_EO3 PD7
#define PIN_CP4 PD2
#define PIN_SHOW PD3
#define PIN_CP1 PD4
#define PIN_CP2 PD5
#define PIN_CP3 PD6
// buffer which holds the currently shown frame
unsigned char pixmap[NUMPLANE][NUM_ROWS][LINEBYTES];
volatile uint8_t keys[8];
inline void busywait() {
//unsigned char i;
//for(i=0; i < 20; i++){
// asm volatile("nop");
//}
}
// display a row
inline void rowshow(unsigned char row, unsigned char plane){
CTRLPORT |= (1 << PIN_SHOW); //blank
COLPORT = pixmap[plane][row][0];
busywait();
CTRLPORT |= (1 << PIN_CP1);
busywait();
CTRLPORT &= ~(1 << PIN_CP1);
busywait();
COLPORT = pixmap[plane][row][1];
busywait();
CTRLPORT |= (1 << PIN_CP2);
busywait();
CTRLPORT &= ~(1 << PIN_CP2);
busywait();
COLPORT = row;
busywait();
CTRLPORT &= ~(1 << PIN_SHOW);
}
inline void checkkeys(uint8_t row){
static uint8_t mask;
if (row == 0) {
mask = 1;
} else {
//read keyboard cols into latch
COLDDR = 0;
CTRLPORT &= ~(1 << PIN_EO3);
CTRLPORT |= (1 << PIN_CP3);
busywait();
CTRLPORT &= ~(1 << PIN_CP3);
busywait();
keys[row - 1] = COLPIN;
CTRLPORT |= (1 << PIN_EO3);
busywait();
COLDDR = 0xFF;
}
COLPORT = mask;
mask <<= 1;
busywait();
CTRLPORT |= (1 << PIN_CP4);
busywait();
CTRLPORT &= ~(1 << PIN_CP4);
}
// depending on the plane this interrupt gets triggered at 50 kHz, 31.25 kHz or
// 12.5 kHz
ISR(TIMER0_COMP_vect)
{
static unsigned char plane = 0;
static unsigned char row = 0;
// reset watchdog
wdt_reset();
// output current row according to current plane
rowshow(row, plane);
if( (plane == 2) && (row<9) ) checkkeys(row);
// increment both row and plane
if(++row == NUM_ROWS){
row = 0;
if(++plane==NUMPLANE) plane=0;
switch(plane){
case 0:
OCR0 = 5;
break;
case 1:
OCR0 = 12;
break;
case 2:
OCR0 = 20;
break;
}
}
}
void timer0_off(){
cli();
TCCR0 = 0x00;
sei();
}
// initialize timer which triggers the interrupt
void timer0_on(){
/* TCCR0: FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00
CS02 CS01 CS00
0 0 0 stop
0 0 1 clk
0 1 0 clk/8
0 1 1 clk/64
1 0 0 clk/256
1 0 1 clk/1024
*/
TCCR0 = 0x0C; // CTC Mode, clk/64
TCNT0 = 0; // reset timer
OCR0 = 20; // compare with this value
TIMSK = 0x02; // compare match Interrupt on
}
void borg_hw_init(){
//Pins am Zeilenport auf Ausgang
CTRLPORT |= (1 << PIN_EO3) | (1 << PIN_SHOW);
CTRLDDR |= (1 << PIN_EO3) | (1 << PIN_CP4) | (1 << PIN_SHOW)
| (1 << PIN_CP1) | (1 << PIN_CP2) | (1 << PIN_CP3);
// switch off all columns for now
// switch column ports to output mode
COLDDR = 0xFF;
COLPORT = 0x00;
timer0_on();
// activate watchdog timer
wdt_reset();
wdt_enable(0x00); // 17ms watchdog
}