pcb and initial code from https://github.com/das-labor/borgware-2d.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
718 lines
18 KiB
718 lines
18 KiB
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include "../../config.h"
|
|
#include "bucket.h"
|
|
#include "piece.h"
|
|
|
|
|
|
/***************************
|
|
* non-interface functions *
|
|
***************************/
|
|
|
|
/**
|
|
* determines if piece is either hovering or gliding
|
|
* @param pBucket the bucket we want information from
|
|
* @return TETRIS_PFS_HOVERING or TETRIS_PFS_GLIDING
|
|
*/
|
|
tetris_bucket_status_t tetris_bucket_hoverStatus(tetris_bucket_t* pBucket)
|
|
{
|
|
// if the piece touches the dump we ensure that the status is "gliding"
|
|
if (tetris_bucket_collision(pBucket, pBucket->nColumn, pBucket->nRow + 1))
|
|
{
|
|
return TETRIS_BUS_GLIDING;
|
|
}
|
|
// otherwise the status must be "hovering"
|
|
else
|
|
{
|
|
return TETRIS_BUS_HOVERING;
|
|
}
|
|
}
|
|
|
|
|
|
/****************************
|
|
* construction/destruction *
|
|
****************************/
|
|
|
|
tetris_bucket_t *tetris_bucket_construct(int8_t nWidth,
|
|
int8_t nHeight)
|
|
{
|
|
assert((nWidth >= 4) && (nWidth <= 16));
|
|
assert((nHeight >= 4) && (nHeight <= 124));
|
|
|
|
tetris_bucket_t *pBucket =
|
|
(tetris_bucket_t *)malloc(sizeof(tetris_bucket_t));
|
|
|
|
if (pBucket != NULL)
|
|
{
|
|
// allocating memory for dump array
|
|
pBucket->dump = (uint16_t*) calloc(nHeight, sizeof(uint16_t));
|
|
|
|
if (pBucket->dump != NULL)
|
|
{
|
|
// setting requested attributes
|
|
pBucket->nFirstMatterRow = nHeight - 1;
|
|
pBucket->nWidth = nWidth;
|
|
pBucket->nHeight = nHeight;
|
|
tetris_bucket_reset(pBucket);
|
|
|
|
return pBucket;
|
|
}
|
|
else
|
|
{
|
|
free(pBucket);
|
|
pBucket = NULL;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void tetris_bucket_destruct(tetris_bucket_t *pBucket)
|
|
{
|
|
assert(pBucket != NULL);
|
|
|
|
// if memory for the dump array has been allocated, free it
|
|
if (pBucket->dump != NULL)
|
|
{
|
|
free(pBucket->dump);
|
|
}
|
|
free(pBucket);
|
|
}
|
|
|
|
|
|
/*******************************
|
|
* bucket related functions *
|
|
*******************************/
|
|
|
|
uint8_t tetris_bucket_calculateLines(uint8_t nRowMask)
|
|
{
|
|
uint8_t nMask = 0x0001;
|
|
uint8_t nLines = 0;
|
|
for (uint8_t i = 0; i < 4; ++i)
|
|
{
|
|
if ((nMask & nRowMask) != 0)
|
|
{
|
|
++nLines;
|
|
}
|
|
nMask <<= 1;
|
|
}
|
|
|
|
return nLines;
|
|
}
|
|
|
|
|
|
void tetris_bucket_reset(tetris_bucket_t *pBucket)
|
|
{
|
|
assert(pBucket != NULL);
|
|
|
|
pBucket->pPiece = NULL;
|
|
pBucket->nColumn = 0;
|
|
pBucket->nRow = 0;
|
|
pBucket->nRowMask = 0;
|
|
|
|
// clear dump if it has been allocated in memory
|
|
if (pBucket->dump != NULL)
|
|
{
|
|
memset(pBucket->dump, 0, pBucket->nHeight);
|
|
}
|
|
|
|
pBucket->status = TETRIS_BUS_READY;
|
|
}
|
|
|
|
|
|
int8_t tetris_bucket_getPieceStartPos(tetris_piece_t *pPiece)
|
|
{
|
|
// set vertical start position (first piece row with matter at pos. 1)
|
|
uint16_t nPieceMap = tetris_piece_getBitmap(pPiece);
|
|
uint16_t nElementMask = 0xF000;
|
|
int8_t nRow = -3;
|
|
while ((nPieceMap & nElementMask) == 0)
|
|
{
|
|
++nRow;
|
|
nElementMask >>= 4;
|
|
}
|
|
if (nRow < 0)
|
|
{
|
|
++nRow;
|
|
}
|
|
|
|
return nRow;
|
|
}
|
|
|
|
|
|
void tetris_bucket_insertPiece(tetris_bucket_t *pBucket,
|
|
tetris_piece_t *pPiece,
|
|
tetris_piece_t **ppOldPiece)
|
|
{
|
|
assert((pBucket != NULL) && (pPiece != NULL) && (ppOldPiece != NULL));
|
|
|
|
// a piece can only be inserted in state TETRIS_PFS_READY
|
|
assert(pBucket->status == TETRIS_BUS_READY);
|
|
|
|
// row mask is now meaningless
|
|
pBucket->nRowMask = 0;
|
|
|
|
// replace old piece
|
|
*ppOldPiece = pBucket->pPiece;
|
|
pBucket->pPiece = pPiece;
|
|
|
|
// set horizontal start position (in the middle of the top line)
|
|
pBucket->nColumn = (pBucket->nWidth - 2) / 2;
|
|
|
|
// set vertical start position (first piece row with matter at pos. 1)
|
|
pBucket->nRow = tetris_bucket_getPieceStartPos(pBucket->pPiece);
|
|
|
|
// did we already collide with something?
|
|
if (tetris_bucket_collision(pBucket, pBucket->nColumn, pBucket->nRow) == 1)
|
|
{
|
|
// game over man, game over!!
|
|
pBucket->status = TETRIS_BUS_GAMEOVER;
|
|
}
|
|
else
|
|
{
|
|
// bring it on!
|
|
pBucket->status = tetris_bucket_hoverStatus(pBucket);
|
|
}
|
|
}
|
|
|
|
|
|
uint8_t tetris_bucket_collision(tetris_bucket_t *pBucket,
|
|
int8_t nColumn,
|
|
int8_t nRow)
|
|
{
|
|
assert(pBucket != NULL);
|
|
|
|
// only allow coordinates which are within sane ranges
|
|
assert((nColumn > -4) && (nColumn < pBucket->nWidth));
|
|
assert((nRow > -4) && (nRow < pBucket->nHeight));
|
|
|
|
// The rows of a piece get compared with the background one by one
|
|
// until either a collision occures or all rows are compared. Both the
|
|
// piece row and the part of the bucket it covers are represented in
|
|
// 4 bits which were singled out from their corresponding uint16_t
|
|
// values and are aligned to LSB. In case where a piece overlaps with
|
|
// either the left or the right border we "enhance" the bucket part
|
|
// via bit shifting and set all bits representing the border to 1.
|
|
//
|
|
// NOTE: LSB represents the left most position.
|
|
uint16_t nPieceMap = tetris_piece_getBitmap(pBucket->pPiece);
|
|
uint16_t nBucketPart;
|
|
uint16_t nPieceRowMap;
|
|
|
|
// negative nRow values indicate that the piece hasn't fully entered the
|
|
// bucket yet which requires special treatment if the piece overlaps
|
|
// with either the left or the right border
|
|
if (nRow < 0)
|
|
{
|
|
uint16_t nBorderMask = 0x0000;
|
|
// piece overlaps with left border
|
|
if (nColumn < 0)
|
|
{
|
|
nBorderMask = 0x1111 << (-nColumn - 1);
|
|
}
|
|
// piece overlaps with right border
|
|
else if ((nColumn + 3) >= pBucket->nWidth)
|
|
{
|
|
nBorderMask = 0x8888 >> ((nColumn + 3) - pBucket->nWidth);
|
|
}
|
|
// return if piece collides with border
|
|
if ((nPieceMap & nBorderMask) != 0)
|
|
{
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// here we check the part which has already entered the bucket
|
|
for (int8_t y = (nRow < 0) ? -nRow : 0; y < 4; ++y)
|
|
{
|
|
// current piece row overlaps with lower border
|
|
if ((y + nRow) >= pBucket->nHeight)
|
|
{
|
|
// all 4 bits represent the lower border
|
|
nBucketPart = 0x000F;
|
|
}
|
|
// piece overlaps with left border
|
|
else if (nColumn < 0)
|
|
{
|
|
// clear all bits we are not interested in
|
|
nBucketPart = (pBucket->dump[y + nRow] & (0x000F >> -nColumn));
|
|
// add zeros to the left (the bits "behind" the left border)
|
|
nBucketPart <<= -nColumn;
|
|
// set bits beyond left border to 1
|
|
nBucketPart |= 0x000F >> (4 + nColumn);
|
|
}
|
|
// piece overlaps with right border
|
|
else if ((nColumn + 3) >= pBucket->nWidth)
|
|
{
|
|
// align the bits we are interested in to LSB
|
|
// (thereby clearing the rest)
|
|
nBucketPart = pBucket->dump[y + nRow] >> nColumn;
|
|
// set bits beyond right border to 1
|
|
nBucketPart |= 0xFFF8 >> (nColumn + 3 - pBucket->nWidth);
|
|
}
|
|
// current row neither overlaps with left, right nor lower border
|
|
else
|
|
{
|
|
// clear all bits we are not interested in and align the
|
|
// remaing row to LSB
|
|
nBucketPart =
|
|
(pBucket->dump[y + nRow] & (0x000F << nColumn)) >> nColumn;
|
|
}
|
|
|
|
// clear all bits of the piece we are not interested in and
|
|
// align the remaing row to LSB
|
|
nPieceRowMap = (nPieceMap & (0x000F << (y << 2))) >> (y << 2);
|
|
|
|
// finally check for a collision
|
|
if ((nBucketPart & nPieceRowMap) != 0)
|
|
{
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// if we reach here, no collision was detected
|
|
return 0;
|
|
}
|
|
|
|
|
|
void tetris_bucket_advancePiece(tetris_bucket_t *pBucket)
|
|
{
|
|
assert(pBucket != NULL);
|
|
|
|
// a piece can only be lowered if it is hovering or gliding
|
|
assert ((pBucket->status == TETRIS_BUS_HOVERING) ||
|
|
(pBucket->status == TETRIS_BUS_GLIDING));
|
|
|
|
if (tetris_bucket_collision(pBucket, pBucket->nColumn, pBucket->nRow + 1))
|
|
{
|
|
uint16_t nPiece = tetris_piece_getBitmap(pBucket->pPiece);
|
|
|
|
// Is the bucket filled up?
|
|
if ((pBucket->nRow < 0) &&
|
|
(nPiece & (0x0FFF >> ((3 + pBucket->nRow) << 2))) != 0)
|
|
{
|
|
pBucket->status = TETRIS_BUS_GAMEOVER;
|
|
}
|
|
else
|
|
{
|
|
// determine valid start point for dump index
|
|
int8_t nStartRow = ((pBucket->nRow + 3) < pBucket->nHeight) ?
|
|
(pBucket->nRow + 3) : pBucket->nHeight - 1;
|
|
for (int8_t i = nStartRow; i >= pBucket->nRow; --i)
|
|
{
|
|
int8_t y = i - pBucket->nRow;
|
|
|
|
// clear all bits of the piece we are not interested in and
|
|
// align the rest to LSB
|
|
uint16_t nPieceMap = (nPiece & (0x000F << (y << 2))) >> (y << 2);
|
|
// shift the remaining content to the current column
|
|
if (pBucket->nColumn >= 0)
|
|
{
|
|
nPieceMap <<= pBucket->nColumn;
|
|
}
|
|
else
|
|
{
|
|
nPieceMap >>= -pBucket->nColumn;
|
|
}
|
|
// embed piece in bucket
|
|
pBucket->dump[i] |= nPieceMap;
|
|
}
|
|
|
|
// update value for the highest row with matter
|
|
int8_t nPieceRow = pBucket->nRow;
|
|
uint16_t nMask = 0x000F;
|
|
for (int i = 0; i < 4; ++i, nMask <<= 4)
|
|
{
|
|
if ((nMask & nPiece) != 0)
|
|
{
|
|
nPieceRow += i;
|
|
break;
|
|
}
|
|
}
|
|
pBucket->nFirstMatterRow = (pBucket->nFirstMatterRow > nPieceRow) ?
|
|
nPieceRow : pBucket->nFirstMatterRow;
|
|
|
|
// the piece has finally been docked
|
|
pBucket->status = TETRIS_BUS_DOCKED;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// since there is no collision the piece may continue its travel
|
|
// to the ground...
|
|
pBucket->nRow++;
|
|
|
|
// are we gliding?
|
|
pBucket->status = tetris_bucket_hoverStatus(pBucket);
|
|
}
|
|
}
|
|
|
|
|
|
uint8_t tetris_bucket_movePiece(tetris_bucket_t *pBucket,
|
|
tetris_bucket_direction_t direction)
|
|
{
|
|
assert(pBucket != NULL);
|
|
|
|
// a piece can only be moved if it is still hovering or gliding
|
|
assert((pBucket->status == TETRIS_BUS_HOVERING) ||
|
|
(pBucket->status == TETRIS_BUS_GLIDING));
|
|
|
|
int8_t nOffset = (direction == TETRIS_BUD_LEFT) ? -1 : 1;
|
|
if (tetris_bucket_collision(pBucket, pBucket->nColumn + nOffset,
|
|
pBucket->nRow) == 0)
|
|
{
|
|
pBucket->nColumn += nOffset;
|
|
|
|
// are we gliding?
|
|
pBucket->status = tetris_bucket_hoverStatus(pBucket);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
uint8_t tetris_bucket_rotatePiece(tetris_bucket_t *pBucket,
|
|
tetris_piece_rotation_t rotation)
|
|
{
|
|
assert(pBucket != NULL);
|
|
|
|
// a piece can only be rotation if it is still hovering or gliding
|
|
assert((pBucket->status == TETRIS_BUS_HOVERING) ||
|
|
(pBucket->status == TETRIS_BUS_GLIDING));
|
|
|
|
tetris_piece_rotate(pBucket->pPiece, rotation);
|
|
|
|
// does the rotated piece cause a collision?
|
|
if (tetris_bucket_collision(pBucket, pBucket->nColumn, pBucket->nRow) != 0)
|
|
{
|
|
// in that case we revert the rotation
|
|
if (rotation == TETRIS_PC_ROT_CW)
|
|
{
|
|
tetris_piece_rotate(pBucket->pPiece, TETRIS_PC_ROT_CCW);
|
|
}
|
|
else
|
|
{
|
|
tetris_piece_rotate(pBucket->pPiece, TETRIS_PC_ROT_CW);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// are we gliding?
|
|
pBucket->status = tetris_bucket_hoverStatus(pBucket);
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
void tetris_bucket_removeCompleteLines(tetris_bucket_t *pBucket)
|
|
{
|
|
assert(pBucket != NULL);
|
|
|
|
// rows can only be removed if we are in state TETRIS_PFS_DOCKED
|
|
assert(pBucket->status == TETRIS_BUS_DOCKED);
|
|
|
|
// bit mask of a full row
|
|
uint16_t nFullRow = 0xFFFF >> (16 - pBucket->nWidth);
|
|
|
|
// bit mask (only 4 bits) that tells us if the n-th row after the
|
|
// current nRow is complete (n-th bit set to 1, LSB represents nRow itself)
|
|
uint8_t nRowMask = 0;
|
|
|
|
// determine sane start and stop values for the dump' index
|
|
int8_t nStartRow = ((pBucket->nRow + 3) >= pBucket->nHeight) ?
|
|
pBucket->nHeight - 1 : pBucket->nRow + 3;
|
|
int8_t nStopRow = (pBucket->nRow < 0) ? 0 : pBucket->nRow;
|
|
|
|
// dump index variables
|
|
// for incomplete rows, both variables will be decremented
|
|
// for complete rows, only i gets decremented
|
|
int8_t nLowestRow = nStartRow;
|
|
|
|
// save old value for the first dump index with matter
|
|
int8_t nFormerFirstMatterRow = pBucket->nFirstMatterRow;
|
|
|
|
// this loop only considers rows which are affected by the piece
|
|
for (int8_t i = nStartRow; i >= nStopRow; --i)
|
|
{
|
|
// is current row a full row?
|
|
if ((nFullRow & pBucket->dump[i]) == nFullRow)
|
|
{
|
|
// adjust value for the highest row with matter
|
|
pBucket->nFirstMatterRow++;
|
|
|
|
// set corresponding bit for the row mask
|
|
// nRowMask |= 0x08 >> (nStartRow - i);
|
|
nRowMask |= 0x01 << (i - pBucket->nRow);
|
|
}
|
|
else
|
|
{
|
|
// if nLowestRow and i differ, the dump has to be shifted
|
|
if (i < nLowestRow)
|
|
{
|
|
pBucket->dump[nLowestRow] = pBucket->dump[i];
|
|
}
|
|
--nLowestRow;
|
|
}
|
|
}
|
|
|
|
// if rows have been removed, this loop shifts the rest of the dump
|
|
uint8_t nComplete = nLowestRow - nStopRow + 1;
|
|
if (nComplete > 0)
|
|
{
|
|
for (int8_t i = nStopRow - 1; nLowestRow >= nFormerFirstMatterRow; --i)
|
|
{
|
|
// is the row we are copying from below the upper border?
|
|
if (i >= nFormerFirstMatterRow)
|
|
{
|
|
// just copy from that row
|
|
pBucket->dump[nLowestRow] = pBucket->dump[i];
|
|
}
|
|
else
|
|
{
|
|
// rows above the upper border are always empty
|
|
pBucket->dump[nLowestRow] = 0;
|
|
}
|
|
--nLowestRow;
|
|
}
|
|
}
|
|
|
|
// ready to get the next piece
|
|
pBucket->status = TETRIS_BUS_READY;
|
|
|
|
pBucket->nRowMask = nRowMask;
|
|
}
|
|
|
|
|
|
/*****************
|
|
* get functions *
|
|
*****************/
|
|
|
|
int8_t tetris_bucket_getWidth(tetris_bucket_t *pBucket)
|
|
{
|
|
assert(pBucket != NULL);
|
|
return pBucket->nWidth;
|
|
}
|
|
|
|
|
|
int8_t tetris_bucket_getHeight(tetris_bucket_t *pBucket)
|
|
{
|
|
assert(pBucket != NULL);
|
|
return pBucket->nHeight;
|
|
}
|
|
|
|
|
|
tetris_piece_t *tetris_bucket_getPiece(tetris_bucket_t *pBucket)
|
|
{
|
|
assert(pBucket != NULL);
|
|
return pBucket->pPiece;
|
|
}
|
|
|
|
|
|
int8_t tetris_bucket_getColumn(tetris_bucket_t *pBucket)
|
|
{
|
|
assert(pBucket != NULL);
|
|
return pBucket->nColumn;
|
|
}
|
|
|
|
|
|
int8_t tetris_bucket_getRow(tetris_bucket_t *pBucket)
|
|
{
|
|
assert(pBucket != NULL);
|
|
return pBucket->nRow;
|
|
}
|
|
|
|
|
|
int8_t tetris_bucket_getFirstMatterRow(tetris_bucket_t *pBucket)
|
|
{
|
|
assert(pBucket != NULL);
|
|
return pBucket->nFirstMatterRow;
|
|
}
|
|
|
|
|
|
uint8_t tetris_bucket_getRowMask(tetris_bucket_t *pBucket)
|
|
{
|
|
assert(pBucket != NULL);
|
|
return pBucket->nRowMask;
|
|
}
|
|
|
|
|
|
tetris_bucket_status_t tetris_bucket_getStatus(tetris_bucket_t *pBucket)
|
|
{
|
|
assert(pBucket != NULL);
|
|
return pBucket->status;
|
|
}
|
|
|
|
|
|
uint16_t tetris_bucket_getDumpRow(tetris_bucket_t *pBucket,
|
|
int8_t nRow)
|
|
{
|
|
assert(pBucket != NULL);
|
|
assert((0 <= nRow) && (nRow < pBucket->nHeight));
|
|
return pBucket->dump[nRow];
|
|
}
|
|
|
|
|
|
#ifdef GAME_BASTET
|
|
|
|
int8_t tetris_bucket_predictDeepestRow(tetris_bucket_t *pBucket,
|
|
tetris_piece_t *pPiece,
|
|
int8_t nColumn)
|
|
{
|
|
int8_t nRow = tetris_bucket_getPieceStartPos(pPiece);
|
|
tetris_piece_t *pActualPiece = pBucket->pPiece;
|
|
pBucket->pPiece = pPiece;
|
|
|
|
// is it actually possible to use this piece?
|
|
if (tetris_bucket_collision(pBucket, (pBucket->nWidth - 2) / 2, nRow) ||
|
|
(tetris_bucket_collision(pBucket, nColumn, nRow)))
|
|
{
|
|
// restore real piece
|
|
pBucket->pPiece = pActualPiece;
|
|
|
|
return -4;
|
|
}
|
|
|
|
// determine deepest row
|
|
nRow = (nRow < pBucket->nFirstMatterRow - 4) ?
|
|
pBucket->nFirstMatterRow - 4 : nRow;
|
|
while ((nRow < pBucket->nHeight) &&
|
|
(!tetris_bucket_collision(pBucket, nColumn, nRow + 1)))
|
|
{
|
|
++nRow;
|
|
}
|
|
|
|
// restore real piece
|
|
pBucket->pPiece = pActualPiece;
|
|
|
|
return nRow;
|
|
}
|
|
|
|
|
|
int8_t tetris_bucket_predictCompleteLines(tetris_bucket_t *pBucket,
|
|
tetris_piece_t *pPiece,
|
|
int8_t nRow,
|
|
int8_t nColumn)
|
|
{
|
|
int8_t nCompleteRows = 0;
|
|
|
|
// bit mask of a full row
|
|
uint16_t nFullRow = 0xFFFF >> (16 - pBucket->nWidth);
|
|
|
|
if (nRow > -4)
|
|
{
|
|
// determine sane start and stop values for the dump's index
|
|
int8_t nStartRow =
|
|
((nRow + 3) >= pBucket->nHeight) ? pBucket->nHeight - 1 : nRow + 3;
|
|
int8_t nStopRow = (nRow < 0) ? 0 : nRow;
|
|
|
|
uint16_t nPiece = tetris_piece_getBitmap(pPiece);
|
|
|
|
for (int8_t i = nStartRow; i >= nStopRow; --i)
|
|
{
|
|
int8_t y = i - nRow;
|
|
|
|
// clear all bits of the piece we are not interested in and
|
|
// align the rest to LSB
|
|
uint16_t nPieceMap = (nPiece & (0x000F << (y << 2))) >> (y << 2);
|
|
// shift the remaining content to the current column
|
|
if (nColumn >= 0)
|
|
{
|
|
nPieceMap <<= nColumn;
|
|
}
|
|
else
|
|
{
|
|
nPieceMap >>= -nColumn;
|
|
}
|
|
// embed piece in dump map
|
|
uint16_t nDumpMap = pBucket->dump[i] | nPieceMap;
|
|
|
|
// is current row a full row?
|
|
if ((nFullRow & nDumpMap) == nFullRow)
|
|
{
|
|
++nCompleteRows;
|
|
}
|
|
}
|
|
}
|
|
|
|
return nCompleteRows;
|
|
}
|
|
|
|
|
|
uint16_t* tetris_bucket_predictBottomRow(tetris_bucket_iterator_t *pIt,
|
|
tetris_bucket_t *pBucket,
|
|
tetris_piece_t *pPiece,
|
|
int8_t nRow,
|
|
int8_t nColumn)
|
|
{
|
|
pIt->pBucket = pBucket;
|
|
pIt->pPiece = pPiece;
|
|
pIt->nColumn = nColumn;
|
|
pIt->nFullRow = 0xFFFF >> (16 - pBucket->nWidth);
|
|
pIt->nCurrentRow = pBucket->nHeight - 1;
|
|
pIt->nRowBuffer = 0;
|
|
|
|
// determine sane start and stop values for the piece's row indices
|
|
pIt->nPieceHighestRow = nRow;
|
|
pIt->nPieceLowestRow = ((pIt->nPieceHighestRow + 3) < pBucket->nHeight) ?
|
|
(pIt->nPieceHighestRow + 3) : pBucket->nHeight - 1;
|
|
|
|
// don't return any trailing rows which are empty, so we look for a stop row
|
|
pIt->nStopRow = pBucket->nFirstMatterRow < nRow ?
|
|
pBucket->nFirstMatterRow : nRow;
|
|
pIt->nStopRow = pIt->nStopRow < 0 ? 0 : pIt->nStopRow;
|
|
|
|
return tetris_bucket_predictNextRow(pIt);
|
|
}
|
|
|
|
|
|
uint16_t* tetris_bucket_predictNextRow(tetris_bucket_iterator_t *pIt)
|
|
{
|
|
uint16_t nPieceMap = 0;
|
|
|
|
if ((pIt->nPieceHighestRow > -4) && (pIt->nCurrentRow >= pIt->nStopRow))
|
|
{
|
|
uint16_t nPiece = tetris_piece_getBitmap(pIt->pPiece);
|
|
|
|
if ((pIt->nCurrentRow <= pIt->nPieceLowestRow) &&
|
|
(pIt->nCurrentRow >= pIt->nPieceHighestRow))
|
|
{
|
|
int8_t y = pIt->nCurrentRow - pIt->nPieceHighestRow;
|
|
|
|
// clear all bits of the piece we are not interested in and
|
|
// align the rest to LSB
|
|
nPieceMap = (nPiece & (0x000F << (y << 2))) >> (y << 2);
|
|
// shift the remaining content to the current column
|
|
if (pIt->nColumn >= 0)
|
|
{
|
|
nPieceMap <<= pIt->nColumn;
|
|
}
|
|
else
|
|
{
|
|
nPieceMap >>= -pIt->nColumn;
|
|
}
|
|
}
|
|
|
|
pIt->nRowBuffer = pIt->pBucket->dump[pIt->nCurrentRow--] | nPieceMap;
|
|
// don't return full (and therefore removed) rows
|
|
if (pIt->nRowBuffer == pIt->nFullRow)
|
|
{
|
|
// recursively determine next (?) row instead
|
|
return tetris_bucket_predictNextRow(pIt);
|
|
}
|
|
// row isn't full
|
|
else
|
|
{
|
|
return &pIt->nRowBuffer;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
#endif /* GAME_BASTET */
|
|
|