Chatbot
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

492 lines
22 KiB

2 years ago
import asyncio
2 years ago
import os, time
2 years ago
from .prompts import *
from .langchain_memory import CustomMemory, ChangeNamesMemory # BotConversationSummaryBufferWindowMemory, TestMemory
2 years ago
from ..utilities.messages import Message
2 years ago
from langchain import PromptTemplate
2 years ago
from langchain import LLMChain, ConversationChain
from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory, CombinedMemory, ConversationSummaryMemory
2 years ago
2 years ago
from langchain.chains.base import Chain
from langchain.chains.summarize import load_summarize_chain
from typing import Any, Dict, List, Optional, Union
2 years ago
from langchain.document_loaders import TextLoader
from langchain.docstore.document import Document
2 years ago
from langchain.text_splitter import RecursiveCharacterTextSplitter
2 years ago
from langchain.embeddings import HuggingFaceEmbeddings # was SentenceTransformerEmbeddings
2 years ago
from langchain.vectorstores import Chroma
2 years ago
2 years ago
from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser, ZeroShotAgent
from langchain.schema import AgentAction, AgentFinish
from langchain.schema import AIMessage, HumanMessage, SystemMessage, ChatMessage
from langchain.utilities import OpenWeatherMapAPIWrapper, SearxSearchWrapper, PythonREPL
from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper
import humanize
2 years ago
from datetime import datetime, timedelta
from termcolor import colored
2 years ago
import logging
logger = logging.getLogger(__name__)
2 years ago
class RoleplayChain(Chain):
llm_chain: LLMChain
character_name: str
persona: str
scenario: str
ai_name_chat: str
human_name_chat: str
output_key: str = "output_text" #: :meta private:
@property
def input_keys(self) -> List[str]:
return ["character_name", "persona", "scenario", "ai_name_chat", "human_name_chat", "llm_chain"]
@property
def output_keys(self) -> List[str]:
return [self.output_key]
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
other_keys = {k: v for k, v in inputs.items() if k not in self.input_keys}
result = self.llm_chain.predict(**other_keys)
return {self.output_key: result}
2 years ago
class CustomOutputParser(AgentOutputParser):
2 years ago
2 years ago
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
# Check if agent should finish
if "Final Answer:" in llm_output:
return AgentFinish(
# Return values is generally always a dictionary with a single `output` key
# It is not recommended to try anything else at the moment :)
return_values={"output": llm_output.split("Final Answer:")[-1].strip()},
log=llm_output,
)
# Parse out the action and action input
regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
regex = r"Action\s*\d*\s*:(.*?)[\s]*[\"\'](.*)[\"\']"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2)
# Return the action and action input
return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output)
2 years ago
2 years ago
class AI(object):
2 years ago
def __init__(self, bot, text_wrapper, image_wrapper, memory_path: str):
2 years ago
self.name = bot.name
self.bot = bot
2 years ago
self.memory_path = memory_path
2 years ago
self.rooms = {}
self.max_context = 4096
2 years ago
from ..wrappers.langchain_koboldcpp import KoboldCpp
2 years ago
self.llm_chat = KoboldCpp(temperature=self.bot.temperature, endpoint_url="http://172.16.33.10:5001/api/latest/generate", max_context=self.max_context, stop=['<|endoftext|>'], verbose=True)
self.llm_summary = KoboldCpp(temperature=0.7, repeat_penalty=1.15, top_k = 20, top_p= 0.9, endpoint_url="http://172.16.33.10:5001/api/latest/generate", max_context=self.max_context, stop=['<|endoftext|>'], max_tokens=512, verbose=True)
self.llm_chat_model = "pygmalion-7b"
self.llm_summary_model = "vicuna-13b"
2 years ago
self.text_wrapper = text_wrapper
self.image_wrapper = image_wrapper
2 years ago
self.embeddings = HuggingFaceEmbeddings()
#self.embeddings = HuggingFaceEmbeddings(model="all-MiniLM-L6-v2")
#self.embeddings = HuggingFaceEmbeddings(
# model_name="sentence-transformers/all-mpnet-base-v2",
# model_kwargs={'device': 'cpu'},
# encode_kwargs={'normalize_embeddings': False}
#)
2 years ago
self.db = Chroma(persist_directory=os.path.join(self.memory_path, f'chroma-db'), embedding_function=self.embeddings)
2 years ago
2 years ago
#self.memory = BotConversationSummerBufferWindowMemory(llm=self.llm_summary, max_token_limit=1200, min_token_limit=200)
def get_memory(self, room_id, human_prefix=None):
2 years ago
if not room_id in self.rooms:
self.rooms[room_id] = {}
2 years ago
if "moving_summary" in self.bot.rooms[room_id]:
moving_summary = self.bot.rooms[room_id]['moving_summary']
else:
moving_summary = "No previous events."
if "last_message_ids_summarized" in self.bot.rooms[room_id]:
last_message_ids_summarized = self.bot.rooms[room_id]['last_message_ids_summarized']
else:
last_message_ids_summarized = []
if not human_prefix:
human_prefix = "Human"
memory = CustomMemory(memory_key="chat_history", input_key="input", human_prefix=human_prefix, ai_prefix=self.bot.name, llm=self.llm_summary, summary_prompt=prompt_progressive_summary, moving_summary_buffer=moving_summary, max_len=int(self.max_context-800), min_len=int(0.1*self.max_context), last_message_ids_summarized=last_message_ids_summarized)
2 years ago
self.rooms[room_id]["memory"] = memory
2 years ago
#memory.chat_memory.add_ai_message(self.bot.greeting)
2 years ago
else:
2 years ago
memory = self.rooms[room_id]["memory"]
if human_prefix:
2 years ago
memory.human_prefix = human_prefix
2 years ago
return memory
2 years ago
2 years ago
async def add_chat_message(self, message):
2 years ago
room_id = message.additional_kwargs['room_id']
conversation_memory = self.get_memory(room_id)
if 'event_id' in message.additional_kwargs and message.additional_kwargs['event_id'] in conversation_memory.last_message_ids_summarized:
#don't add already summarized messages
return
2 years ago
conversation_memory.chat_memory.messages.append(message)
2 years ago
conversation_memory.chat_memory_day.messages.append(message)
2 years ago
2 years ago
async def clear(self, room_id):
conversation_memory = self.get_memory(room_id)
conversation_memory.clear()
2 years ago
2 years ago
async def ingest_textfile(self, filename, category):
loader = TextLoader(filename)
2 years ago
documents = loader.load()
2 years ago
documents[0].metadata['indexed'] = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
documents[0].metadata['category'] = category
2 years ago
text_splitter = RecursiveCharacterTextSplitter(
# Set a really small chunk size, just to show.
2 years ago
chunk_size = 1024,
chunk_overlap = 80,
2 years ago
length_function = len,
2 years ago
#length_function = self.llm_chat.get_num_tokens, # The Embeddings are generated with SsentenceTransformers, not this model
2 years ago
)
2 years ago
2 years ago
docs = text_splitter.split_documents(documents)
2 years ago
2 years ago
for i in range(len(docs)):
docs[i].metadata['part'] = f"{i}/{len(docs)}"
2 years ago
print(f"Indexing {len(docs)} documents")
texts = [doc.page_content for doc in docs]
metadatas = [doc.metadata for doc in docs]
2 years ago
self.db.add_texts(texts=texts, metadatas=metadatas, ids=None)
self.db.persist()
async def search_vectordb(self, query, category):
#query = "How is climate in Germany?"
#retreiver = db.as_retreiver()
#docs = retreiver.get_relevant_documents(query)
if category:
#https://github.com/chroma-core/chroma/blob/main/examples/where_filtering.ipynb
output_docs = self.db.similarity_search_with_score(query, filter={"category": category})
else:
output_docs = self.db.similarity_search_with_score(query)
2 years ago
print(query)
print('###')
for doc, score in output_docs:
print("-" * 80)
print("Score: ", score)
2 years ago
#print(doc.page_content)
print(doc)
2 years ago
print("-" * 80)
2 years ago
2 years ago
async def generate(self, message, reply_fn, typing_fn):
2 years ago
prompt_template = "{input}"
chain = LLMChain(
llm=self.llm_chat,
prompt=PromptTemplate.from_template(prompt_template),
)
2 years ago
output = await chain.arun(message.content)
2 years ago
return output.strip()
2 years ago
async def generate_roleplay(self, message, reply_fn, typing_fn):
2 years ago
chat_ai_name = self.bot.name
chat_human_name = message.additional_kwargs['user_name']
room_id = message.additional_kwargs['room_id']
if self.llm_chat_model.startswith('vicuna'):
prompt_chat = prompt_vicuna
chat_ai_name = "### Assistant"
chat_human_name = "### Human"
elif self.llm_chat_model.startswith('pygmalion'):
prompt_chat = prompt_pygmalion
chat_human_name = "You"
elif self.llm_chat_model.startswith('koboldai'):
prompt_chat = prompt_koboldai
else:
prompt_chat = prompt_alpaca
conversation_memory = self.get_memory(room_id, chat_human_name)
readonlymemory = ReadOnlySharedMemory(memory=conversation_memory)
custom_memory = ChangeNamesMemory(memory=conversation_memory, replace_ai_chat_names={self.bot.name: chat_ai_name}, replace_human_chat_names={message.additional_kwargs['user_name']: chat_human_name})
2 years ago
#summary_memory = ConversationSummaryMemory(llm=self.llm_summary, memory_key="summary", input_key="input")
#combined_memory = CombinedMemory(memories=[conversation_memory, summary_memory])
2 years ago
#await self.bot.schedule(self.bot.queue, make_progressive_summary, self.rooms[room_id]["summary"], conversation_memory.buffer) #.add_done_callback(
#t = datetime.fromtimestamp(message.additional_kwargs['timestamp'])
#when = humanize.naturaltime(t)
#print(when)
# ToDo: either use prompt.format() to fill out the pygmalion prompt and use
# the resulting template text to feed it into the instruct prompt's instruction
# or do this with the prompt.partial()
2 years ago
for i in range(1):
prompt = prompt_chat.partial(
ai_name=self.bot.name,
persona=self.bot.persona,
scenario=self.bot.scenario,
human_name=chat_human_name,
ai_name_chat=chat_ai_name,
)
if "summary" in prompt.input_variables:
prompt = prompt.partial(summary=conversation_memory.moving_summary_buffer)
if "example_dialogue" in prompt.input_variables:
prompt = prompt.partial(
example_dialogue=self.bot.example_dialogue.replace("{{user}}", chat_human_name)
)
tmp_prompt_text = prompt.format(chat_history=conversation_memory.buffer, input=message.content)
prompt_len = self.llm_chat.get_num_tokens(tmp_prompt_text)
if prompt_len+200 > self.max_context:
logger.warning(f"Prompt too large. Estimated {prompt_len} tokens. Summarizing...")
await reply_fn(f"<WARNING> Prompt too large. Estimated {prompt_len} tokens")
if i == 0:
await conversation_memory.prune_memory(conversation_memory.min_len)
elif i == 1:
conversation_memory.moving_summary_buffer = await self.summarize(conversation_memory.moving_summary_buffer)
else:
break
2 years ago
#roleplay_chain = RoleplayChain(llm_chain=chain, character_name=self.bot.name, persona=self.bot.persona, scenario=self.bot.scenario, ai_name_chat=chat_ai_name, human_name_chat=chat_human_name)
2 years ago
chain = ConversationChain(
2 years ago
llm=self.llm_chat,
2 years ago
prompt=prompt,
2 years ago
verbose=True,
memory=custom_memory,
#stop=['<|endoftext|>', '\nYou:', f"\n{chat_human_name}:"],
2 years ago
)
# output = llm_chain(inputs={"ai_name": self.bot.name, "persona": self.bot.persona, "scenario": self.bot.scenario, "human_name": chat_human_name, "ai_name_chat": self.bot.name, "chat_history": "", "input": message.content})['results'][0]['text']
2 years ago
stop = ['<|endoftext|>', f"\n{chat_human_name}:"]
2 years ago
if chat_human_name != message.additional_kwargs['user_name']:
stop.append(f"\n{message.additional_kwargs['user_name']}:")
#print(f"Message is: \"{message.content}\"")
2 years ago
await asyncio.sleep(0)
output = await chain.arun({"input":message.content, "stop": stop})
output = output.replace("<BOT>", self.bot.name).replace("<USER>", chat_human_name)
output = output.replace("### Assistant", self.bot.name)
2 years ago
output = output.replace(f"\n{self.bot.name}: ", " ")
output = output.strip()
if "*activates the neural uplink*" in output.casefold():
pass # call agent
own_message_resp = await reply_fn(output)
2 years ago
output_message = AIMessage(
2 years ago
content=output,
additional_kwargs={
"timestamp": datetime.now().timestamp(),
"user_name": self.bot.name,
"event_id": own_message_resp.event_id,
2 years ago
"user_id": self.bot.connection.user_id,
"room_name": message.additional_kwargs['room_name'],
"room_id": own_message_resp.room_id,
2 years ago
}
)
2 years ago
await conversation_memory.asave_context(message, output_message)
summary_len = self.llm_chat.get_num_tokens(conversation_memory.moving_summary_buffer)
if summary_len > 400:
logger.warning("Summary is getting too long. Refining...")
conversation_memory.moving_summary_buffer = await self.summarize(conversation_memory.moving_summary_buffer)
new_summary_len = self.llm_chat.get_num_tokens(conversation_memory.moving_summary_buffer)
logger.info(f"Refined summary from {summary_len} tokens to {new_summary_len} tokens ({new_summary_len-summary_len} tokens)")
self.bot.rooms[room_id]['moving_summary'] = conversation_memory.moving_summary_buffer
self.bot.rooms[room_id]['last_message_ids_summarized'] = conversation_memory.last_message_ids_summarized
2 years ago
return output
2 years ago
async def summarize(self, text, map_prompt=prompt_summary2, combine_prompt=prompt_summary2):
#metadata = {"source": "internet", "date": "Friday"}
#doc = Document(page_content=text, metadata=metadata)
docs = [ Document(page_content=text) ]
map_chain = LLMChain(llm=self.llm_summary, prompt=map_prompt, verbose=True)
reduce_chain = LLMChain(llm=self.llm_summary, prompt=combine_prompt, verbose=True)
text_splitter = RecursiveCharacterTextSplitter(
#separators = ["\n\n", "\n", " ", ""],
chunk_size = 1600,
chunk_overlap = 80,
length_function = self.llm_chat.get_num_tokens,
)
for i in range(2):
docs = text_splitter.split_documents(docs)
if len(docs) > 1:
#results = await map_chain.aapply([{"text": d.page_content} for d in docs])
#docs = [Document(page_content=r['output'], metadata=docs[i].metadata) for i, r in enumerate(results)
for i, d in enumerate(docs):
await asyncio.sleep(0) # yield for matrix-nio
docs[i].page_content = await map_chain.arun(docs[i].page_content)
combined = "\n".join([d.page_content for d in docs])
docs = [ Document(page_content=combined) ]
else:
break
2 years ago
await asyncio.sleep(0) # yield for matrix-nio
return await reduce_chain.arun(text=docs[0].page_content)
2 years ago
#ToDo: max_tokens and stop
async def diary(self, room_id):
diary_chain = LLMChain(llm=self.llm_summary, prompt=prompt_outline, verbose=True)
conversation_memory = self.get_memory(room_id)
2 years ago
text_splitter = RecursiveCharacterTextSplitter(
separators = ["\n", " ", ""],
chunk_size = 1600,
chunk_overlap = 40,
length_function = self.llm_summary.get_num_tokens,
)
docs = text_splitter.create_documents([conversation_memory.buffer_day])
string_diary = []
for i, doc in enumerate(docs):
logger.info("Writing diary... page {i} of {len(docs)}.")
await asyncio.sleep(0) # yield for matrix-nio
diary_chunk = await diary_chain.apredict(text=docs[i].page_content, ai_name=self.bot.name)
string_diary.append(diary_chunk)
diary_entry = "\n".join(string_diary)
if self.llm_summary.get_num_tokens(diary_entry) > 1400:
logger.info("Summarizing diary entry.")
await asyncio.sleep(0)
diary_entry = await self.summarize(diary_entry)
if self.llm_summary.get_num_tokens(diary_entry) > 1600:
logger.warning("Diary entry too long. Discarding.")
diary_entry = conversation_memory.moving_summary_buffer
return diary_entry
2 years ago
async def agent(self):
os.environ["OPENWEATHERMAP_API_KEY"] = "82452fdb0d1e0e805ac096db87914342"
# Tools
search = DuckDuckGoSearchAPIWrapper()
weather = OpenWeatherMapAPIWrapper()
search2 = SearxSearchWrapper(searx_host="https://search.mdosch.de")
python_repl = PythonREPL()
tools = [
Tool(
name = "Search",
func=search.run,
description="useful for when you need to answer questions about current events"
),
Tool(
name = "Searx Search",
func=search.run,
description="useful for when you need to answer questions about current events"
),
Tool(
name = "Weather",
func=weather.run,
description="Useful for fetching current weather information for a specified location. Input should be a location string (e.g. 'London,GB')."
),
Tool(
name = "Summary",
func=summry_chain.run,
description="useful for when you summarize a conversation. The input to this tool should be a string, representing who will read this summary."
)
]
prompt = ZeroShotAgent.create_prompt(
tools=tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "chat_history", "agent_scratchpad"]
)
output_parser = CustomOutputParser()
# LLM chain consisting of the LLM and a prompt
llm_chain = LLMChain(llm=llm, prompt=prompt_agent)
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
#agent = initialize_agent(tools, llm, agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION, verbose=True, return_intermediate_steps=True, memory=memory)
#tool_names = [tool.name for tool in tools]
#agent = LLMSingleActionAgent(
# llm_chain=llm_chain,
# output_parser=output_parser,
# stop=["\nObservation:"],
# allowed_tools=tool_names,
# verbose=True,
#)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory)
await agent_executor.arun(input="How many people live in canada as of 2023?")
async def sleep(self):
logger.info(f"{self.bot.name} sleeping now... running background tasks...")
2 years ago
# Write Date into chat history
for room_id in self.rooms.keys():
#fake_message = Message(datetime.now().timestamp(), self.bot.name, "", event_id=None, user_id=None, room_name=None, room_id=room_id)
conversation_memory = self.get_memory(room_id)
message = SystemMessage(
content=f"~~~~ {datetime.now().strftime('%A, %B %d, %Y')} ~~~~",
additional_kwargs={
"timestamp": datetime.now().timestamp(),
2 years ago
"user_name": None,
2 years ago
"event_id": None,
"user_id": None,
"room_name": None,
"room_id": room_id,
}
)
2 years ago
if conversation_memory.chat_memory.messages[-1].content.startswith('~~~~ '):
conversation_memory.chat_memory.messages.pop()
2 years ago
conversation_memory.chat_memory.messages.append(message)
#conversation_memory.chat_memory.add_system_message(message)
# [ 21:30 | Tuesday 9th | Pentagram City Alleys | 18°C | Overcast | 92% ]
2 years ago
# Summarize the last day and save a diary entry
yesterday = ( datetime.now() - timedelta(days=1) ).strftime('%Y-%m-%d')
for room_id in self.rooms.keys():
if len(conversation_memory.chat_memory_day.messages) > 0:
2 years ago
if not "diary" in self.bot.rooms[room_id]:
self.bot.rooms[room_id]['diary'] = {}
2 years ago
self.bot.rooms[room_id]["diary"][yesterday] = await self.diary(room_id)
# Calculate new goals for the character
# Update stats
# Let background tasks run
conversation_memory.chat_memory_day.clear()
await conversation_memory.prune_memory(conversation_memory.min_len)
2 years ago
await self.bot.write_conf2(self.bot.rooms)
logger.info(f"{self.bot.name} done sleeping and ready for the next day...")
2 years ago
async def prime_llm(self, text):
self.llm_chat(text, max_tokens=1)
2 years ago
def replace_all(text, dic):
#example_dialogue=replace_all(self.bot.example_dialogue, {"{{user}}": chat_human_name, "{{char}}": chat_ai_name})
2 years ago
for i, j in dic.items():
text = text.replace(i, j)
return text