Browse Source

map-reduce summarization

master
Hendrik Langer 2 years ago
parent
commit
0fabd77408
  1. 44
      matrix_pygmalion_bot/bot/ai/langchain.py
  2. 2
      matrix_pygmalion_bot/bot/ai/langchain_memory.py
  3. 14
      matrix_pygmalion_bot/bot/ai/prompts.py

44
matrix_pygmalion_bot/bot/ai/langchain.py

@ -9,9 +9,11 @@ from langchain import LLMChain, ConversationChain
from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory, CombinedMemory, ConversationSummaryMemory from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory, CombinedMemory, ConversationSummaryMemory
from langchain.chains.base import Chain from langchain.chains.base import Chain
from typing import Dict, List, Union from langchain.chains.summarize import load_summarize_chain
from typing import Any, Dict, List, Optional, Union
from langchain.document_loaders import TextLoader from langchain.document_loaders import TextLoader
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import SentenceTransformerEmbeddings from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import Chroma from langchain.vectorstores import Chroma
@ -25,6 +27,7 @@ from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper
import humanize import humanize
from datetime import datetime, timedelta from datetime import datetime, timedelta
from termcolor import colored
import logging import logging
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -265,9 +268,9 @@ class AI(object):
# output = llm_chain(inputs={"ai_name": self.bot.name, "persona": self.bot.persona, "scenario": self.bot.scenario, "human_name": chat_human_name, "ai_name_chat": self.bot.name, "chat_history": "", "input": message.content})['results'][0]['text'] # output = llm_chain(inputs={"ai_name": self.bot.name, "persona": self.bot.persona, "scenario": self.bot.scenario, "human_name": chat_human_name, "ai_name_chat": self.bot.name, "chat_history": "", "input": message.content})['results'][0]['text']
stop = ['<|endoftext|>', f"\n{chat_human_name}"] stop = ['<|endoftext|>', f"\n{chat_human_name}:"]
if chat_human_name != message.additional_kwargs['user_name']: if chat_human_name != message.additional_kwargs['user_name']:
stop.append(f"\n{message.additional_kwargs['user_name']}") stop.append(f"\n{message.additional_kwargs['user_name']}:")
#print(f"Message is: \"{message.content}\"") #print(f"Message is: \"{message.content}\"")
await asyncio.sleep(0) await asyncio.sleep(0)
output = await chain.arun({"input":message.content, "stop": stop}) output = await chain.arun({"input":message.content, "stop": stop})
@ -307,11 +310,35 @@ class AI(object):
return output return output
async def summarize(self, text): async def summarize(self, text, map_prompt=prompt_summary2, combine_prompt=prompt_summary2):
#metadata = {"source": "internet", "date": "Friday"}
#doc = Document(page_content=text, metadata=metadata)
docs = [ Document(page_content=text) ]
map_chain = LLMChain(llm=self.llm_summary, prompt=map_prompt, verbose=True)
reduce_chain = LLMChain(llm=self.llm_summary, prompt=combine_prompt, verbose=True)
text_splitter = RecursiveCharacterTextSplitter(
#separators = ["\n\n", "\n", " ", ""],
chunk_size = 1600,
chunk_overlap = 80,
length_function = self.llm_chat.get_num_tokens,
)
for i in range(2):
docs = text_splitter.split_documents(docs)
if len(docs) > 1:
#results = await map_chain.aapply([{"text": d.page_content} for d in docs])
#docs = [Document(page_content=r['output'], metadata=docs[i].metadata) for i, r in enumerate(results)
for i, d in enumerate(docs):
await asyncio.sleep(0) # yield for matrix-nio
docs[i].page_content = await map_chain.arun(docs[i].page_content)
combined = "\n".join([d.page_content for d in docs])
docs = [ Document(page_content=combined) ]
else:
break
await asyncio.sleep(0) # yield for matrix-nio await asyncio.sleep(0) # yield for matrix-nio
summary_chain = LLMChain(llm=self.llm_summary, prompt=prompt_summary, verbose=True) return await reduce_chain.arun(text=docs[0].page_content)
return await summary_chain.arun(text=text)
#ToDo: We can summarize the whole dialogue here, let half of it in the buffer but skip doing a summary until this is flushed, too?
#ToDo: max_tokens and stop #ToDo: max_tokens and stop
async def diary(self, room_id): async def diary(self, room_id):
@ -326,7 +353,7 @@ class AI(object):
) )
docs = text_splitter.create_documents([conversation_memory.buffer_day]) docs = text_splitter.create_documents([conversation_memory.buffer_day])
string_diary = [] string_diary = []
for i in range(len(docs)): for i, doc in enumerate(docs):
logger.info("Writing diary... page {i} of {len(docs)}.") logger.info("Writing diary... page {i} of {len(docs)}.")
await asyncio.sleep(0) # yield for matrix-nio await asyncio.sleep(0) # yield for matrix-nio
diary_chunk = await diary_chain.apredict(text=docs[i].page_content, ai_name=self.bot.name) diary_chunk = await diary_chain.apredict(text=docs[i].page_content, ai_name=self.bot.name)
@ -453,3 +480,4 @@ def replace_all(text, dic):
for i, j in dic.items(): for i, j in dic.items():
text = text.replace(i, j) text = text.replace(i, j)
return text return text

2
matrix_pygmalion_bot/bot/ai/langchain_memory.py

@ -92,9 +92,11 @@ class CustomMemory(BaseMemory):
self.moving_summary_buffer = loop.run_until_complete( self.moving_summary_buffer = loop.run_until_complete(
self.predict_new_summary(pruned_memory, self.moving_summary_buffer) self.predict_new_summary(pruned_memory, self.moving_summary_buffer)
) )
# loop.run_in_executor(None, self.predict_new_summary, pruned_memory, self.moving_summery_buffer)
async def prune_memory(self, max_len): async def prune_memory(self, max_len):
# Prune buffer if it exceeds max token limit # Prune buffer if it exceeds max token limit
#ToDo: We can summarize the whole dialogue here, let half of it in the buffer but skip doing a summary until this is flushed, too?
buffer = self.chat_memory.messages buffer = self.chat_memory.messages
curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer)
if curr_buffer_length > max_len: if curr_buffer_length > max_len:

14
matrix_pygmalion_bot/bot/ai/prompts.py

@ -97,7 +97,6 @@ template_question_simple = """Question: {question}
Answer: Let's think step by step.""" Answer: Let's think step by step."""
prompt_summary = PromptTemplate.from_template( prompt_summary = PromptTemplate.from_template(
"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
@ -111,6 +110,19 @@ Summarize the following text in one paragraph.
""" """
) )
prompt_summary2 = PromptTemplate.from_template(
"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
Write a concise summary of the following:
### Input:
{text}
### Response:
"""
)
prompt_progressive_summary = PromptTemplate.from_template( prompt_progressive_summary = PromptTemplate.from_template(
"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

Loading…
Cancel
Save