Browse Source

added functions which predict the outcome of a piece drop

feature/2015
Christian Kroll 15 years ago
parent
commit
326585e5ac
  1. 172
      games/tetris/playfield.c
  2. 40
      games/tetris/playfield.h

172
games/tetris/playfield.c

@ -119,6 +119,26 @@ void tetris_playfield_reset(tetris_playfield_t *pPl)
} }
int8_t tetris_playfield_getPieceStartPos(tetris_piece_t *pPiece)
{
// set vertical start position (first piece row with matter at pos. 1)
uint16_t nPieceMap = tetris_piece_getBitmap(pPiece);
uint16_t nElementMask = 0xF000;
int8_t nRow = -3;
while ((nPieceMap & nElementMask) == 0)
{
++nRow;
nElementMask >>= 4;
}
if (nRow < 0)
{
++nRow;
}
return nRow;
}
/* Function: tetris_playfield_insertPiece /* Function: tetris_playfield_insertPiece
* Description: inserts a new piece * Description: inserts a new piece
* Argument pPl: playfield to perform action on * Argument pPl: playfield to perform action on
@ -146,18 +166,7 @@ void tetris_playfield_insertPiece(tetris_playfield_t *pPl,
pPl->nColumn = (pPl->nWidth - 2) / 2; pPl->nColumn = (pPl->nWidth - 2) / 2;
// set vertical start position (first piece row with matter at pos. 1) // set vertical start position (first piece row with matter at pos. 1)
uint16_t nPieceMap = tetris_piece_getBitmap(pPl->pPiece); pPl->nRow = tetris_playfield_getPieceStartPos(pPl->pPiece);
uint16_t nElementMask = 0xF000;
pPl->nRow = -3;
while ((nPieceMap & nElementMask) == 0)
{
++pPl->nRow;
nElementMask >>= 4;
}
if (pPl->nRow < 0)
{
++pPl->nRow;
}
// did we already collide with something? // did we already collide with something?
if (tetris_playfield_collision(pPl, pPl->nColumn, pPl->nRow) == 1) if (tetris_playfield_collision(pPl, pPl->nColumn, pPl->nRow) == 1)
@ -593,3 +602,142 @@ uint16_t tetris_playfield_getDumpRow(tetris_playfield_t *pPl,
return pPl->dump[nRow]; return pPl->dump[nRow];
} }
/* Function: tetris_playfield_predictDeepestRow
* Description: returns the deepest possible row of a given piece
* Argument pPl: the playfield on which we want to test a piece
* Argument pPiece: the piece which should be tested
* Argument nColumn: the column where the piece should be dropped
* Return value: the row of the piece (playfield compliant coordinates)
*/
int8_t tetris_playfield_predictDeepestRow(tetris_playfield_t *pPl,
tetris_piece_t *pPiece,
int8_t nColumn)
{
int8_t nRow = tetris_playfield_getPieceStartPos(pPiece);
tetris_piece_t *pActualPiece = pPl->pPiece;
pPl->pPiece = pPiece;
// is it actually possible to use this piece?
if (tetris_playfield_collision(pPl, (pPl->nWidth - 2) / 2, nRow) ||
(tetris_playfield_collision(pPl, nColumn, nRow)))
{
return -4;
}
// determine deepest row
while ((nRow < pPl->nHeight) &&
(!tetris_playfield_collision(pPl, nColumn, nRow + 1)))
{
++nRow;
}
// restore real piece
pPl->pPiece = pActualPiece;
return nRow;
}
/* Function: tetris_playfield_predictCompleteLines
* Description: predicts the number of complete lines for a piece at
* a given column
* Argument pPl: the playfield on which we want to test a piece
* Argument pPiece: the piece which should be tested
* Argument nColumn: the column where the piece should be dropped
* Return value: amount of complete lines
*/
int8_t tetris_playfield_predictCompleteLines(tetris_playfield_t *pPl,
tetris_piece_t *pPiece,
int8_t nColumn)
{
int8_t nCompleteRows = 0;
// bit mask of a full row
uint16_t nFullRow = 0xFFFF >> (16 - pPl->nWidth);
int8_t nRow = tetris_playfield_predictDeepestRow(pPl, pPiece, nColumn);
if (nRow > -4)
{
// determine sane start and stop values for the dump's index
int8_t nStartRow =
((nRow + 3) >= pPl->nHeight) ? pPl->nHeight - 1 : nRow + 3;
int8_t nStopRow = (nRow < 0) ? 0 : nRow;
uint16_t nPiece = tetris_piece_getBitmap(pPiece);
for (int8_t i = nStartRow; i >= nStopRow; --i)
{
int8_t y = i - nRow;
// clear all bits of the piece we are not interested in and
// align the rest to LSB
uint16_t nPieceMap = (nPiece & (0x000F << (y << 2))) >> (y << 2);
// shift the remaining content to the current column
if (nColumn >= 0)
{
nPieceMap <<= nColumn;
}
else
{
nPieceMap >>= -nColumn;
}
// embed piece in dump map
uint16_t nDumpMap = pPl->dump[i] | nPieceMap;
// is current row a full row?
if ((nFullRow & nDumpMap) == nFullRow)
{
++nCompleteRows;
}
}
}
return nCompleteRows;
}
/* Function: tetris_playfield_predictDumpRow
* Description: predicts the appearance of a playfield row for a piece
* at a given column
* Argument pPl: the playfield on which we want to test a piece
* Argument pPiece: the piece which should be tested
* Argument nColumn: the column where the piece should be dropped
* Argument nRow: the row of interest
* Return value: amount of complete lines
*/
uint16_t tetris_playfield_predictDumpRow(tetris_playfield_t *pPl,
tetris_piece_t *pPiece,
int8_t nColumn,
int8_t nRow)
{
int8_t nPieceRow = tetris_playfield_predictDeepestRow(pPl, pPiece, nColumn);
uint16_t nPieceMap = 0;
if (nPieceRow > -4)
{
// determine sane start and stop values for the piece's indices
int8_t nStartRow = ((nPieceRow + 3) < pPl->nHeight) ?
(nPieceRow + 3) : pPl->nHeight - 1;
uint16_t nPiece = tetris_piece_getBitmap(pPiece);
if ((nRow <= nStartRow) && (nRow >= nPieceRow))
{
int8_t y = nRow - nPieceRow;
// clear all bits of the piece we are not interested in and
// align the rest to LSB
nPieceMap = (nPiece & (0x000F << (y << 2))) >> (y << 2);
// shift the remaining content to the current column
if (nColumn >= 0)
{
nPieceMap <<= nColumn;
}
else
{
nPieceMap >>= -nColumn;
}
}
}
return pPl->dump[nRow] | nPieceMap;
}

40
games/tetris/playfield.h

@ -209,5 +209,43 @@ uint16_t tetris_playfield_getDumpRow(tetris_playfield_t *pPl,
int8_t nRow); int8_t nRow);
#endif /*TETRIS_PLAYFIELD_H_*/ /* Function: tetris_playfield_predictDeepestRow
* Description: returns the deepest possible row of a given piece
* Argument pPl: the playfield on which we want to test a piece
* Argument pPiece: the piece which should be tested
* Argument nColumn: the column where the piece should be dropped
* Return value: the row of the piece (playfield compliant coordinates)
*/
int8_t tetris_playfield_predictDeepestRow(tetris_playfield_t *pPl,
tetris_piece_t *pPiece,
int8_t nColumn);
/* Function: tetris_playfield_predictCompleteLines
* Description: predicts the number of complete lines for a piece at
* a given column
* Argument pPl: the playfield on which we want to test a piece
* Argument pPiece: the piece which should be tested
* Argument nColumn: the column where the piece should be dropped
* Return value: amount of complete lines
*/
int8_t tetris_playfield_predictCompleteLines(tetris_playfield_t *pPl,
tetris_piece_t *pPiece,
int8_t nColumn);
/* Function: tetris_playfield_predictDumpRow
* Description: predicts the appearance of a playfield row for a piece
* at a given column
* Argument pPl: the playfield on which we want to test a piece
* Argument pPiece: the piece which should be tested
* Argument nColumn: the column where the piece should be dropped
* Argument nRow: the row of interest
* Return value: amount of complete lines
*/
uint16_t tetris_playfield_predictDumpRow(tetris_playfield_t *pPl,
tetris_piece_t *pPiece,
int8_t nColumn,
int8_t nRow);
#endif /*TETRIS_PLAYFIELD_H_*/

Loading…
Cancel
Save